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Abstract: This manuscript outlines a viable approach for training and evaluating machine
learning systems for high-stakes, human-centered, or regulated applications using common Python
programming tools. The accuracy and intrinsic interpretability of two types of constrained models,
monotonic gradient boosting machines and explainable neural networks, a deep learning architecture
well-suited for structured data, are assessed on simulated data and publicly available mortgage
data. For maximum transparency and the potential generation of personalized adverse action
notices, the constrained models are analyzed using post-hoc explanation techniques including plots
of partial dependence and individual conditional expectation and with global and local Shapley
feature importance. The constrained model predictions are also tested for disparate impact and
other types of discrimination using measures with long-standing legal precedents, adverse impact
ratio, marginal effect, and standardized mean difference, along with straightforward group fairness
measures. By combining interpretable models, post-hoc explanations, and discrimination testing
with accessible software tools, this text aims to provide a template workflow for machine learning
applications that require high accuracy and interpretability and that mitigate risks of discrimination.

Keywords: deep learning; disparate impact; explanation; fairness; gradient boosting machine;
interpretable; machine learning; neural network; Python

1. Introduction

Responsible artificial intelligence (AI) has been variously conceptualized as AI-based products
or projects that use transparent technical mechanisms, that create appealable decisions or outcomes,
that perform reliably and in a trustworthy manner over time, that exhibit minimal social discrimination,
and that are designed by humans with diverse experiences, both in terms of demographics and
professional backgrounds (e.g., Responsible Artificial Intelligence, Responsible AI: A Framework for
Building Trust in Your AI Solutions, PwC’s Responsible AI, Responsible AI Practices). Although
responsible AI is today a somewhat broad and amorphous notion, at least one aspect is becoming
clear. Machine learning (ML) models, a common application of AI, can present serious risks.
ML models can be inaccurate and unappealable black-boxes, even with the application of newer
post-hoc explanation techniques [1] (e.g., When a Computer Program Keeps You in Jail). ML models
can perpetuate and exacerbate discrimination [2–4], and ML models can be hacked, resulting in
manipulated model outcomes or the exposure of proprietary intellectual property or sensitive training
data [5–8]. This manuscript makes no claim that these interdependent issues of ML opaqueness,
discrimination, privacy harms, and security vulnerabilities have been resolved, even as singular
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entities, and much less as complex intersectional phenomena. However, Sections 2–4 do propose some
specific technical countermeasures, mostly in the form of interpretable models, post-hoc explanation,
and disparate impact (DI) and discrimination testing, that responsible practitioners can use to address
a subset of these vexing problems. (In the United States (US), interpretable models, explanations,
DI testing, and the model documentation they enable may also be required under the Civil Rights Acts
of 1964 and 1991, the Americans with Disabilities Act, the Genetic Information Nondiscrimination
Act, the Health Insurance Portability and Accountability Act, the Equal Credit Opportunity Act
(ECOA), the Fair Credit Reporting Act (FCRA), the Fair Housing Act, Federal Reserve Supervision
and Regulation (SR) Letter 11-7, the European Union (EU) General Data Protection Regulation (GDPR)
Article 22, or other laws and regulations [9]. Note that this text and associated software are not, and
should not be construed as, legal advice or regulatory compliance requirements.)

Section 2 describes methods and materials, including training datasets, interpretable and
constrained models, post-hoc explanations, tests for DI and other social discrimination, and public and
open source software resources associated with this text. In Section 3, interpretable and constrained
modeling results are compared to less interpretable and unconstrained models, and post-hoc
explanation and discrimination testing results are also presented for interpretable models. Of course,
an even wider array of tools and techniques are likely helpful to fully minimize discrimination,
inaccuracy, privacy, and security risks associated with ML models. Section 4 puts forward a more
holistic responsible ML modeling workflow, and addresses the burgeoning Python ecosystem for
responsible AI, along with appeal and override of automated decisions, and discrimination testing
and remediation in practice. Section 5 closes this manuscript with a brief summary of the outlined
methods, materials, results, and discussion.

2. Materials and Methods

The simulated data (see Section 2.1) are based on the well-known Friedman datasets. Its known
feature importance and augmented discrimination characteristics are used to gauge the validity
of interpretable modeling, post-hoc explanation, and discrimination testing techniques [10,11].
The mortgage data (see Section 2.2) are sourced from the Home Mortgage Disclosure Act (HMDA)
database, a fairly realistic data source for demonstrating the template workflow [12] (see Mortgage
data (HMDA)). To provide a sense of fit differences, performance is compared on simulated data
and collected mortgage data between the more interpretable constrained ML models and the less
interpretable unconstrained ML models. Because the unconstrained ML models, gradient boosting
machines (GBMs, e.g., [13,14]) and artificial neural networks (ANNs, e.g., [15–18]), do not exhibit
convincing accuracy benefits on the simulated or mortgage data and can also present the unmitigated
risks discussed above, further explanation and discrimination analyses are applied only to the
constrained, interpretable ML models [1,19,20]. Here, monotonic gradient boosting machines
(MGBMs, as implemented in XGBoost or h2o, see Section 2.3) and explainable neural networks (XNNs,
e.g., [21,22], see Section 2.4) will serve as those more interpretable models for subsequent explanatory
and discrimination analyses. MGBM and XNN interpretable model architectures are selected for the
example workflow because they are straightforward variants of popular unconstrained ML models.
If practitioners are working with GBM and ANN models, it should be relatively uncomplicated to also
evaluate the constrained versions of these models.

The same can be said of the selected explanation methods and discrimination tests. Due to their
post-hoc nature, they can often be shoe-horned into existing ML workflows and pipelines. Presented
explanation techniques include partial dependence (PD) and individual conditional expectation
(ICE) (see Section 2.5) and Shapley values (see Section 2.6) [14,23–25]. PD, ICE, and Shapley values
provide direct, global, and local summaries and descriptions of constrained models without resorting
to the use of intermediary and approximate surrogate models. Discrimination testing methods
discussed (see Section 2.7) include adverse impact ratio (AIR, see Part 1607—Uniform Guidelines on
Employee Selection Procedures (1978) §1607.4), marginal effect (ME), and standardized mean difference
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(SMD) [2,26,27]. Accuracy and other confusion matrix measures are also reported by demographic
segment [28]. All outlined materials and methods are implemented in open source Python code, and
are made available on GitHub (see Section 2.8).

2.1. Simulated Data

Simulated data are created based on a signal-generating function, f , applied to input data, X,
first proposed in Friedman [10] and extended in Friedman et al. [11]:

f (X) = 10 sin(π XFriedman,1 XFriedman,2) + 20(XFriedman,3 − 0.5)2 + 10 XFriedman,4 + 5 XFriedman,5 (1)

where each XFriedman,j is a random uniform feature in [0, 1]. In Friedman’s texts, a Gaussian noise
term was added to create a continuous output feature for testing spline regression methodologies.
In this manuscript, the signal-generating function and input features are modified in several ways.
Two binary features, a categorical feature with five discrete levels, and a bias term are introduced
into f to add a degree of complexity that may more closely mimic real-world settings. For binary
classification analysis, the Gaussian noise term is replaced with noise drawn from a logistic distribution
and coefficients are re-scaled to be 1

5 of the size of those used by Friedman, and any f (X) value above
0 is classified as a positive outcome, while f (X) values less than or equal to zero are designated as
negative outcomes. Finally, f is augmented with two hypothetical protected class-control features
with known dependencies on the binary outcome to allow for discrimination testing. The simulated
data are generated to have eight input features, twelve after numeric encoding of categorical features,
and a binary outcome, two class-control features, and 100,000 instances. The simulated data are then
split into a training and test set, with 80,000 and 20,000 instances, respectively. Within the training set,
a five-fold cross-validation indicator is used for training all models. For an exact specification of the
simulated data, see the software resources referenced in Section 2.8.

2.2. Mortgage Data

The mortgage dataset analyzed here is a random sample of consumer-anonymized loans from the
HDMA database. These loans are a subset of all originated mortgage loans in the 2018 HMDA data that
were chosen to represent a relatively comparable group of consumer mortgages. A selection of features
is used to predict whether a loan is high-priced, i.e., the annual percentage rate (APR) charged was 150
basis points (1.5%) or more above a survey-based estimate of other similar loans offered around the
time of the given loan. After data cleaning and preprocessing to encode categorical features and create
missing markers, the mortgage data contain ten input features and the binary outcome, high-priced.
The data are split into a training set with 160,338 loans and a marker for 5-fold cross-validation and
a test set containing 39,662 loans. While lenders would almost certainly use more information than
the selected features to determine whether to offer and originate a high-priced loan, the selected
input features (loan to value (LTV) ratio, debt to income (DTI) ratio, property value, loan amount,
introductory interest rate, customer income, etc.) are likely to be some of the most influential factors
that a lender would consider. See the resources put forward in Section 2.8 and Appendix A for more
information regarding the HMDA mortgage data.

2.3. Monotonic Gradient Boosting Machines

MGBMs constrain typical GBM training to consider only tree splits that obey user-defined positive
and negative monotonicity constraints, with respect to each input feature, Xj, and a target feature, y,
independently. An MGBM remains an additive combination of B trees trained by gradient boosting,
Tb, and each tree learns a set of splitting rules that respect monotonicity constraints, Θmono

b . For an
instance, x, a trained MGBM model, gMGBM, takes the form:
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gMGBM(x) =
B−1

∑
b=0

Tb (x; Θmono
b ) (2)

As in unconstrained GBM, Θmono
b is selected in a greedy, additive fashion by minimizing a

regularized loss function that considers known target labels, the predictions of all subsequently trained
trees in gMGBM, and the b-th tree splits applied to x, Tb(x; Θmono

b ), in a numeric loss function (e.g.,
squared loss, Huber loss), and a regularization term that penalizes complexity in the current tree.
See Appendices B.1 and B.2 for details pertaining to MGBM training.

Herein, two gMGBM models are trained. One on the simulated data and one on the mortgage
data. In both cases, positive and negative monotonic constraints for each Xj are selected using
domain knowledge, random grid search is used to determine other hyperparameters, and five-fold
cross-validation and test partitions are used for model assessment. For exact parameterization of the
two gMGBM models, see the software resources referenced in Section 2.8.

2.4. Explainable Neural Networks

XNNs are an alternative formulation of additive index models in which the ridge functions are
neural networks [21]. XNNs also bear a strong resemblance to generalized additive models (GAMs)
and so-called explainable boosting machines (EBMs or GA2Ms), which consider main effects and a
small number of two-way interactions and may also incorporate boosting into their training [14,29].
XNNs enable users to tailor interpretable neural network architectures to a given prediction problem
and to visualize model behavior by plotting ridge functions. A trained XNN function, gXNN, applied
to some instance , x, is defined as:

gXNN(x) = µ0 +
K−1

∑
k=0

γknk(
J−1

∑
j=0

βk,jxj) (3)

where µ0 is a global bias for K individually specified ANN subnetworks, nk, with weights γk.
The inputs to each nk are themselves a linear combination of the J modeling inputs and their associated
βk,j coefficients in the deepest, i.e., projection, layer of gXNN.

Two gXNN models are trained by mini-batch stochastic gradient descent (SGD) on the simulated
data and mortgage data. Each gXNN is assessed in five training folds and in a test data partition.
L1 regularization is applied to network weights to induce a sparse and interpretable model, where each
nk and corresponding γk are ideally associated with an important Xj or combination thereof. gXNN

models appear highly sensitive to weight initialization and batch size. Be aware that gXNN architectures
may require manual and judicious feature selection due to long training times. For more details
regarding gXNN training, see the software resources in Section 2.8 and Appendices B.1 and B.3.

2.5. One-Dimensional Partial Dependence and Individual Conditional Expectation

PD plots are a widely-used method for describing and plotting the estimated average prediction
of a complex model, g, across some partition of data, X, for some interesting input feature, Xj ∈ X [14].
ICE plots are a newer method that describes the local behavior of g with regard to values of an
input feature in a single instance, xj. PD and ICE can be overlaid in the same plot to create a holistic
global and local portrait of the predictions for some g and Xj [23]. When PD(Xj, g) and ICE(xj, g)
curves diverge, such plots can also be indicative of modeled interactions in g or expose flaws in PD
estimation, e.g., inaccuracy in the presence of strong interactions and correlations [23,30]. For details
regarding the calculation of one-dimensional PD and ICE, see the software resources in Section 2.8 and
Appendices B.1 and B.4.
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2.6. Shapley Values

Shapley explanations are a class of additive, locally accurate feature contribution measures with
long-standing theoretical support [24,31]. Shapley explanations are the only known locally accurate
and globally consistent feature contribution values, meaning that Shapley explanation values for
input features always sum to the model’s prediction, g(x), for any instance x, and that Shapley
explanation values should not decrease in magnitude for some instance of xj when g is changed
such that xj truly makes a stronger contribution to g(x) [24,25]. Shapley values can be estimated
in different ways, many of which are intractable for datasets with large numbers of input features.
Tree Shapley Additive Explanations (SHAP) is a specific implementation of Shapley explanations that
relies on traversing internal decision tree structures to efficiently estimate the contribution of each
xj for some g(x) [25]. Tree SHAP has been implemented in popular gradient boosting libraries such
as h2o, LightGBM, and XGBoost, and Tree SHAP is used to calculate accurate and consistent global
and local feature importance for MGBM models in Section 3.2.2 and Appendix E.1. Deep SHAP is
an approximate Shapley value technique that creates SHAP values for ANNs [24]. Deep SHAP is
implemented in the shap package and is used to generate SHAP values for the two gXNN models
discussed in Section 3.2.2 and Appendix E.1. For more information pertaining to the calculation of
Shapley values, see Appendices B.1 and B.5.

2.7. Discrimination Testing Measures

Because many current technical discussions of fairness in ML appear inconclusive (e.g., Tutorial:
21 Fairness Definitions and Their Politics), this text will draw on regulatory and legal standards that
have been used for years in regulated, high-stakes employment and financial decisions. The discussed
measures are also representative of fair lending analyses and pair well with the mortgage data.
(See Appendix C for a brief discussion regarding different types of discrimination in US legal
and regulatory settings, and Appendix D for remarks on practical vs. statistical significance for
discrimination measures.) One such common measure of DI used in US litigation and regulatory
settings is ME. ME is simply the difference between the percent of the control group members receiving
a favorable outcome and the percent of the protected class members receiving a favorable outcome:

ME ≡ 100 · (Pr(ŷ = 1|Xc = 1)− Pr(ŷ = 1|Xp = 1)) (4)

where ŷ are the model decisions, Xp and Xc represent binary markers created from some demographic
attribute, c denotes the control group (often whites or males), p indicates a protected group, and Pr(·)
is the operator for conditional probability. ME is a favored DI measure used by the US Consumer
Financial Protection Bureau (CFPB), the primary agency charged with regulating fair lending laws at
the largest US lending institutions and for various other participants in the consumer financial market
(see Supervisory Highlights, Issue 9, Fall 2015). Another important DI measure is AIR, more commonly
known as a relative risk ratio in settings outside of regulatory compliance.

AIR ≡
Pr(ŷ = 1|Xp = 1)
Pr(ŷ = 1|Xc = 1)

(5)

AIR is equal to the ratio of the proportion of the protected class that receives a favorable outcome and
the proportion of the control class that receives a favorable outcome. Statistically significant AIR values
below 0.8 can be considered prima facie evidence of discrimination. An additional long-standing
and pertinent measure of DI is SMD. SMD is often used to assess disparities in continuous features,
such as income differences in employment analyses, or interest rate differences in lending. It originates
from work on statistical power, and is more formally known as Cohen’s d. SMD is equal to the
difference in the average protected class outcome, ¯̂yp, minus the control class outcome, ¯̂yc, divided by
a measure of the standard deviation of the population, σŷ. (There are several measures of the standard
deviation of the score that are typically used: 1. the standard deviation of the population, irrespective
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of protected class status, 2. a standard deviation calculated only over the two groups being considered
in a particular calculation, or 3. a pooled standard deviation, using the standard deviations for each of
the two groups with weights.) Cohen defined values of this measure to have small, medium, and large
effect sizes if the values exceeded 0.2, 0.5, and 0.8, respectively.

SMD ≡
¯̂yp − ¯̂yc

σŷ
(6)

The numerator in the SMD is roughly equivalent to ME but adds the standard deviation divisor
as a standardizing factor. Because of this standardization factor, SMD allows for a comparison across
different types of outcomes, such as inequity in mortgage closing fees or inequities in the interest
rates given on certain loans. In this, one may apply definitions in Cohen [26] of small, medium,
and large effect sizes, which represent a measure of practical significance, which is described in
detail in Appendix D. Finally, confusion matrix measures in demographic groups, such as accuracy,
false positive rate (FPR), false negative rate (FNR), and their ratios, are also considered as measures of
DI in Section 3.2.3 and Appendix E.2.

2.8. Software Resources

Python code to reproduce discussed results is available at: https://github.com/h2oai/article-
information-2019. The primary Python packages employed are: numpy 1.14.5 and pandas 0.22.0 for data
manipulation, h2o 3.26.0.9, Keras 2.3.1, shap 0.31.0, and tensorflow 1.14.0 for modeling, explanation,
and discrimination testing, and typically matplotlib 2.2.2 for plotting.

3. Results

Results are laid out for the simulated and mortgage datasets. Accuracy is compared for
unconstrained, less interpretable gGBM and gANN models and constrained, more interpretable gMGBM

and gXNN models. Then, for the gMGBM and gXNN models, intrinsic interpretability, post-hoc
explanation, and discrimination testing results are explored.

3.1. Simulated Data Results

Fit comparisons between unconstrained and constrained models and XNN interpretability results
are discussed in Sections 3.1.1 and 3.1.2. As model training and assessment on the simulated data is
a rough validation exercise meant to showcase expected results on data with known characteristics,
and given that most of the techniques in the proposed workflow are already used widely or have
been validated elsewhere, reporting of simulated data results in the main text will focus mostly on fit
measures and the more novel gXNN interpretability results. The bulk of the post-hoc explanation and
discrimination testing results for the simulated data are left to Appendix E.

3.1.1. Constrained vs. Unconstrained Model Fit Assessment

Table 1 presents a variety of fit measures for gGBM, gMGBM, gANN, and gXNN on the simulated test
data. gXNN exhibited the best performance, but the models exhibited only a fairly small range of fit
results. Interpretability and explainability benefits of the constrained models appeared to come at little
cost to overall model performance, or in the case of gANN and gXNN, no cost at all. For the displayed
measures, gMGBM performed ∼2% worse on average than gGBM. gXNN performed ∼0.5% better on
average than gXNN, and gXNN actually showed slightly better fit than gANN across all fit measures
except specificity. Fit measures that required a probability cutoff were taken at the best F1 threshold
for each model.

https://github.com/h2oai/article-information-2019
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Table 1. Fit measures for gGBM(X), gMGBM(X), gANN(X), and gXNN(X) on the simulated test data.
Arrows indicate the direction of improvement for each measure and the best result in each column is
displayed in bold font.

Model Accuracy ↑ AUC ↑ F1 ↑ Logloss ↓ MCC ↑ RMSE ↓ Sensitivity ↑ Specificity ↑

gGBM 0.757 0.847 0.779 0.486 0.525 0.400 0.858 0.657
gMGBM 0.744 0.842 0.771 0.502 0.504 0.407 0.864 0.625
gANN 0.757 0.850 0.779 0.480 0.525 0.398 0.858 0.657
gXNN 0.758 0.851 0.781 0.479 0.528 0.397 0.867 0.648

3.1.2. Interpretability Results

For gXNN, inherent interpretability manifested as plots of sparse γk output layer weights, nk
subnetwork ridge functions, and sparse β j,k weights in the bottom projection layer. Figure 1 provides
detailed insights into the structure of gXNN (also described in Equation (3)). Figure 1a displays the
sparse γk weights of the output layer, where only nk subnetworks with k ∈ {1, 4, 7, 8, 9}were associated
with large magnitude weights. The nk subnetwork ridge functions appear in Figure 1b as simplistic
but distinctive functional forms. Color-coding between Figure 1a,b visually reinforces the direct
feed-forward relationship between the nk subnetworks and the γk weights of the output layer.

nk subnetworks were plotted across the output values of their associated ∑j βk,jxj projection layer
hidden units, and color-coding between Figure 1b,c link the β j,k weights to their nk subnetworks. Most
of the heavily utilized nk subnetworks had sparse weights in their ∑j βk,jxj projection layer hidden
units. In particular, subnetwork n1 appeared to be almost solely a function of XFriedman,3 and appeared
to exhibit the expected quadratic behavior for XFriedman,3. Subnetworks n7, n8, and n9 appeaed to
be most associated with the globally important XFriedman,1 and XFriedman,2 features, likely betraying
the effort required for gXNN to model the nonlinear sin() function of the XFriedman,1 and XFriedman,2
product, and these subnetworks, especially n7 and n8, appeared to display some noticeable sinusoidal
characteristics. Subnetwork n4 seemed to be a linear combination of all the original input Xj features,
but did weigh the linear XFriedman,4 and XFriedman,5 terms roughly in the correct two-to-one ratio.
As a whole, Figure 1a–c exhibited evidence that gXNN learned about the signal-generating function
in Equation (1) and the displayed information should help practitioners understand which original
input Xj features were weighed heavily in each nk subnetwork, and which nk subnetworks have a
strong influence on gXNN(X) output. See Appendix B.3 for additional details regarding general XNN
architecture.
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Figure 1. Output layer γk weights, corresponding nk subnetwork ridge functions, and associated projection layer βk,j weights for gXNN on the simulated data.
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3.2. Mortgage Data Results

Results for the mortgage data are presented in Sections 3.2.1—3.2.3 to showcase the example
workflow. gANN and gXNN outperformed gGBM and gMGBM on the mortgage data, but as in Section 3.1.1,
the constrained variants of both model architectures did not show large differences in model fit with
respect to unconstrained variants. Assuming that in high-stakes applications small fit differences
on static test data did not outweigh the need for enhanced model debugging facilitated by high
interpretability, only gMGBM and gXNN interpretability, post-hoc explainability, and discrimination
testing results are presented.

3.2.1. Constrained vs. Unconstrained Model Fit Assessment

Table 2 shows that gANN and gXNN noticeably outperformed gGBM and gMGBM on the mortgage
data for most of the fit measures. This is at least partially due to the preprocessing required to
present directly comparable post-hoc explainability results and to use neural networks and TensorFlow,
e.g., numerical encoding of categorical features and missing values. This preprocessing appears to
hamstring some of the tree-based models’ inherent capabilities. gGBM models trained on non-encoded
data with missing values repeatedly produced receiver operating characteristic area under the curve
(AUC) values of ∼0.81 (not shown, but available in resources discussed in Section 2.8).

Table 2. Fit measures for gGBM(X), gMGBM(X), gANN(X), and gXNN(X) on the mortgage test data.
Arrows indicate the direction of improvement for each measure and the best result in each column is
displayed in bold font.

Model Accuracy ↑ AUC ↑ F1 ↑ Logloss ↓ MCC ↑ RMSE ↓ Sensitivity ↑ Specificity ↑

gGBM 0.795 0.828 0.376 0.252 0.314 0.276 0.634 0.813
gMGBM 0.765 0.814 0.362 0.259 0.305 0.278 0.684 0.773
gANN 0.865 0.871 0.474 0.231 0.418 0.262 0.624 0.891
gXNN 0.869 0.868 0.468 0.233 0.409 0.263 0.594 0.898

Regardless of the fit differences between the two families of models, the difference between the
constrained and unconstrained variants within the two types of models is small for the GBMs and
smaller for the ANNs, ∼3.5% and ∼1% worse fit respectively, averaged across the measures in Table 2.

3.2.2. Interpretability and Post-hoc Explanation Results

For gMGBM(X), intrinsic interpretability was evaluated with PD and ICE plots of mostly monotonic
prediction behavior for several important Xj, and post-hoc Shapley explanation analysis was used
to create global and local feature importance. Global Shapley feature importance for gMGBM(X) on
the mortgage test data is reported in Figure 2. gMGBM placed high importance on LTV ratio, perhaps
too high, and also weighed DTI ratio, property value, loan amount, and introductory rate period
heavily in many of its predictions. Tree SHAP values are reported in the margin space, prior to the
application of the logit link function, and the reported numeric values can be interpreted as the mean
absolute impact of each Xj on gMGBM(X) in the mortgage test data in the gMGBM(X) margin space.
The potential over-emphasis of LTV ratio, and the de-emphasis of income, likely an important feature
from a business perspective, and the de-emphasis of the encoded no introductory rate period flag
feature may also contribute to the decreased performance of gMGBM(X) as compared to gXNN(X).
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Figure 2. Global mean absolute Tree Shapley Additive Explanations (SHAP) feature importance for
gMGBM(X) on the mortgage test data.

Domain knowledge was used to positively constrain DTI ratio and LTV ratio and to negatively
constrain income and the loan term flag under gMGBM. The monotonicity constraints for DTI ratio
and LTV ratio were confirmed for gMGBM(X) on the mortgage test data in Figure 3. Both DTI ratio
and LTV ratio displayed positive monotonic behavior at all selected percentiles of gMGBM(X) for ICE
and on average with PD. Because PD curves generally followed the patterns of the ICE curves for
both features, it is also likely that no strong interactions were at play for DTI ratio and LTV ratio
under gMGBM. Of course, the monotonicity constraints themselves could have dampened the effects of
non-monotonic interactions under gMGBM, even if they did exist in the training data (e.g., LTV ratio
and the no introductory rate period flag, see Figure 6). This rigidity could also have played a role
in the performance differences between gMGBM(X) and gXNN(X) in the mortgage data not observed
for the simulated data, wherein strong interactions appeared to be between features with the same
monotonicity constraints (e.g., XFriedman,1 and XFriedman,2, see Figure 1).

PD and ICE are displayed with a histogram to highlight any sparse regions in an input feature’s
domain. Because most ML models will always issue a prediction on any instance with a correct schema,
it is crucial to consider whether a given model learned enough about an instance to make an accurate
prediction. Viewing PD and ICE along with a histogram is a convenient method to visually assess
whether a prediction is reasonable and based on sufficient training data. The DTI ratio and LTV ratio do
appear to have had sparse regions in their univariate distributions. The monotonicity constraints likely
play to the advantage of gMGBM in this regard, as gMGBM(X) appears to carry reasonable predictions
learned from dense domains into the sparse domains of both features.

Figure 3 also displays PD and ICE for the unconstrained feature property value. Unlike the
DTI ratio and LTV ratio, PD for property value did not always follow the patterns established by
ICE curves. While PD showed monotonically increasing prediction behavior on average, apparently
influenced by large predictions at extreme gMGBM(X) percentiles, ICE curves for individuals at the 40th
percentile of gMGBM(X) and lower exhibited different prediction behavior with respect to property
value. Some individuals at these lower percentiles displayed monotonically decreasing prediction
behavior, while others appeared to show fluctuating prediction behavior. Property value was strongly
right-skewed, with little data regarding high-value property from which gMGBM can learn. For the
most part, reasonable predictions did appear to be carried from more densely populated regions to
more sparsely populated regions. However, prediction fluctuations at lower gMGBM(X) percentiles
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were visible, and appeared in a sparse region of property value. This divergence of PD and ICE
could be indicative of an interaction affecting property value under gMGBM [23], and analysis by
surrogate decision tree did show evidence of numerous potential interactions in lower predictions
ranges of gMGBM(X) [32] (not shown, but available in resources discussed in Section 2.8). Fluctuations
in ICE could also have been caused by overfitting or by leakage of strong non-monotonic signal from
important constrained features into the modeled behavior of non-constrained features.

Figure 3. PD, ICE for ten individuals across selected percentiles of gMGBM(X), and histograms for the
three most important input features of gMGBM on the mortgage test data.

In Figure 4, local Tree SHAP values are displayed for selected individuals at the 10th, 50th, and
90th percentiles of gMGBM(X) in the mortgage test data. Each Shapley value in Figure 4 represents
the difference in gMGBM(x) and the average of gMGBM(X) associated with this instance of some input
feature xj [33]. Accordingly, the logit of the sum of the Shapley values and the average of gMGBM(X) is
gMGBM(x), the prediction in the probability space for any x.

Figure 4. Tree SHAP values for three individuals across selected percentiles of gMGBM(X) for the
mortgage test data.

The selected individuals showed an expected progression of mostly negative Shapley values at
the 10th percentile, a mixture of positive and negative Shapley values at the 50th percentile, mostly
positive Shapley values at the 90th percentile, and with globally important features driving most local
model decisions. Deeper significance for Figure 4 lies in the ability of Tree SHAP to accurately and
consistently summarize any single gMGBM(x) prediction in this manner, which is generally important
for enabling logical appeal or override of ML-based decisions, and is specifically important in the
context of lending, where applicable regulations often require lenders to provide consumer-specific
reasons for denying credit to an individual. In the US, applicable regulations are typically ECOA and
FCRA, and the consumer-specific reasons are commonly known as adverse actions codes.
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Figure 5 displays global feature importance for gXNN(X) on the mortgage test data. Deep SHAP
values are reported in the probability space, after the application of the logit link function. They are
also calculated from the projection layer of gXNN. Thus, the Deep SHAP values in Figure 5 are the
estimated average absolute impact of each input, Xj, in the projection layer and probability space of
gXNN(X) for the mortgage test data. gXNN distributes importance more evenly across business drivers
and puts stronger emphasis on the no introductory rate period flag feature than does gMGBM. Like
gMGBM, gXNN puts little emphasis on the other flag features. Unlike gMGBM, gXNN assigned higher
importance to property value, loan amount, and income, and lower importance on LTV ratio and
DTI ratio.

Figure 5. Global mean absolute Deep SHAP feature importance for gXNN(X) on the mortgage test data.

The capability of gXNN to model nonlinear phenomenon and high-degree interactions, and to do
so in an interpretable manner, is on display in Figure 6. Figure 6a presents the sparse γk weights of
the gXNN output layer in which the nk subnetworks with k ∈ {0, 1, 2, 3, 5, 8, 9} had large magnitude
weights and nk subnetworks, k ∈ {4, 6, 7}, had small or near-zero magnitude weights. Distinctive
ridge functions that fed into those large magnitude γk weights are highlighted in Figure 6b and
color-coded to pair with their corresponding γk weight. As in the Section 3.1.2, nk ridge function
plots varied with the output of the corresponding projection layer ∑j βk,jxj hidden unit, with weights
displayed in matching colors in Figure 6c. In both the simulated and mortgage data, nk ridge functions
appeared to be elementary functional forms that the output layer learned to combine to generate
accurate predictions, reminiscent of basis functions for the modeled space. Figure 6c displays the
sparse β j,k weights of the projection layer ∑j βk,jxj hidden units that were associated with each nk
subnetwork ridge function. For instance, subnetwork n3 was influenced by large weights for LTV ratio,
no introductory rate period flag, and introductory rate period, whereas subnetwork n9 was nearly
completely dominated by the weight for income. See Appendix B.3 for details regarding general XNN
architecture.
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Figure 6. Output layer γk weights, corresponding nk ridge functions, and associated projection layer βk,j weights for gXNN on the mortgage data.
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To complement the global interpretability of gXNN, Figure 7 displays local Shapley values for
selected individuals, estimated from the projection layer using Deep SHAP in the gXNN probability
space. Similar to Tree SHAP, local Deep SHAP values should sum to gXNN(x). While the Shapley
values appeared to follow the roughly increasing pattern established in Figures A4, A6 and 4, their
true value was their ability to be calculated for any gXNN(x) prediction, as a means to summarize
model reasoning and allow for appeal and override of specific ML-based decisions.

Figure 7. Deep SHAP values for three individuals across selected percentiles of gXNN(X) on the
mortgage test data.

3.2.3. Discrimination Testing Results

Table 3a,b show the results of the discrimination tests using the mortgage data for two sets of
class-control groups: blacks as compared to whites, and females as compared to males. As with the
simulated data in Table A1, several measures of disparities are shown, with the SMDs calculated using
the probabilities from gMGBM(X) and gXNN(X), and the accuracy, FPRs, and FPR ratios, MEs, and AIRs
calculated using a binary outcome based on a cutoff of 0.20 (anyone with probabilities of 0.2 or less
receives the favorable outcome; see Appendix F for comments pertaining to discrimination testing and
cutoff selection). Since gMGBM and gXNN were predicting the likelihood of receiving a high-priced loan,
gMGBM and gXNN assume that a lower score was favorable. Thus, one might consider FPR ratios as a
measure of the class-control disparities. FPR ratios were higher under gXNN than gMGBM (2.45 vs. 2.10)
in Table 3b, but overall FPRs were lower for blacks under gXNN (0.295 vs. 0.315) in Table 3a. This is the
same pattern seen in the simulated data results in Appendix E.2, leading to the question of whether a
fairness goal should not only consider class-control relative rates, but also intra-class improvements
in the chosen fairness measure. Similar results were found for the female-male comparison, but the
relative rates are less stark: 1.15 for gMGBM(X) and 1.21 for gXNN(X).

Both ME and AIR showed higher disparities for blacks under gXNN than gMGBM. Blacks receive
high-priced loans 21.4% more frequently using gXNN vs. 18.3% for gMGBM. Both gMGBM and gXNN

showed AIRs that were statistically significantly below parity (not shown, but available in resources
discussed in Section 2.8), and which were also below the EEOC’s 0.80 threshold. This would typically
indicate need for further review to determine the cause and validity of these disparities, and a few
relevant remediation techniques for such discovered discrimination are discussed in Section 4.3. On the
other hand, women improved under gXNN vs. gMGBM (MEs of 3.6% vs. 4.1%; AIRs of 0.955 vs. 0.948).
The AIRs, while statistically significantly below parity, were well above the EEOC’s threshold of
0.80. In most situations, the values of these measures alone would not likely flag a model for further
review. Black SMDs for gXNN(X) and gMGBM(X) were similar: 0.621 and 0.628, respectively. These
exceeded Cohen’s guidelines of 0.5 for a medium effect size and would likely trigger further review.
Female SMDs were well below Cohen’s definition of small effect size: 0.105 and 0.084 for gXNN(X) and
gMGBM(X), respectively. Similar to results for female AIR, these values alone are unlikely to prompt
further review.
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Table 3. Discrimination measures for the mortgage test data. Arrows indicate the direction of
improvement for each measure.

(a) Group size, accuracy, and FPR for gMGBM(X)
and gXNN(X) on the mortgage test data.

Class N Model Accuracy↑ FPR↓

Black 2608
gMGBM

gXNN
0.654
0.702

0.315
0.295

White 28,361
gMGBM

gXNN
0.817
0.857

0.150
0.120

Female 8301
gMGBM

gXNN
0.768
0.822

0.208
0.158

Male 13,166
gMGBM

gXNN
0.785
0.847

0.182
0.131

(b) AIR, ME, SMD, and FPR ratio for gMGBM(X) and gXNN(X)
on the mortgage test data.

Model Protected
Class

Control
Class AIR↑ ME↓ SMD↓ FPR

Ratio↓

gMGBM Black
Female

White
Male

0.776
0.948

18.3%
4.1%

0.628
0.084

2.10
1.15

gXNN Black
Female

White
Male

0.743
0.955

21.4%
3.6%

0.621
0.105

2.45
1.21

4. Discussion

4.1. The Burgeoning Python Ecosystem for Responsible Machine Learning

Figure 8 displays a holistic approach to ML model training, assessment, and deployment meant to
decrease discrimination, inaccuracy, and privacy and security risks for high-stakes, human-centered, or
regulated ML applications. (See Toward Responsible Machine Learning for details regarding Figure 8.)
While all the methods mentioned in Figure 8 play an important role in increasing human trust and
understanding of ML, a few pertinent references and Python resources are highlighted below as further
reading to augment this this text’s focus on certain interpretable models, post-hoc explanation, and
discrimination testing techniques.

Any discussion of interpretable ML models would be incomplete without references to the
seminal work of the Rudin group at Duke University and EBMs, or GA2Ms, pioneered by researchers
at Microsoft and Cornell [29,34,35]. In keeping with a major theme of this manuscript, models from
these leading researchers and several other kinds of interpretable ML models are now available as
open source Python packages. Among several types of currently available interpretable models,
practitioners can now use Python to evaluate EBM in the interpret package, optimal sparse decision
trees, GAMs in the pyGAM package, a variant of Friedman’s RuleFit in the skope-rules package,
monotonic calibrated interpolated lookup tables in tensorflow/lattice, and this looks like that
interpretable deep learning [34–37] (see Optimal Sparse Decision Trees, ProtoPNet (this looks like
that)). Additional, relevant references and Python functionality include:

• Exploratory data analysis (EDA): H2OAggregatorEstimator in h2o [38].
• Sparse feature extraction: H2OGeneralizedLowRankEstimator in h2o [39].
• Preprocessing and models for privacy: diffprivlib, tensorflow/privacy [40–43].
• Causal inference and probabilistic programming: dowhy, PyMC3 [44].
• Post-hoc explanation: structured data explanations with alibi and PDPbox, image classification

explanations with DeepExplain, and natural language explanations with allennlp [45–47].

https://github.com/jphall663/hc_ml
https://github.com/xiyanghu/OSDT
https://github.com/cfchen-duke/ProtoPNet
https://github.com/cfchen-duke/ProtoPNet
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• Discrimination testing: aequitas, Themis.
• Discrimination remediation: Reweighing, adversarial de-biasing, learning fair representations,

and reject option classification with AIF360 [48–51].
• Model debugging: foolbox, SALib, tensorflow/cleverhans, and tensorflow/model-

analysis [52–55].
• Model documentation: models cards [56], e.g., GPT-2 model card, Object Detection model card.

See Awesome Machine Learning Interpretability for a longer, community-curated metalist of
related software packages and resources.

Figure 8. An example responsible ML workflow in which interpretable models, post-hoc explanations,
discrimination testing and remediation techniques, among several other processes, can create an
understandable and trustworthy ML system for high-stakes, human-centered, or regulated applications.

4.2. Appeal and Override of Automated Decisions

Interpretable models and post-hoc explanations can play an important role in increasing
transparency into model mechanisms and predictions. As seen in Section 3, interpretable models often
enable users to enforce domain knowledge-based constraints on model behavior, to ensure that models
obey reasonable expectations, and to gain data-derived insights into the modeled problem domain.
Post-hoc explanations generally help describe and summarize mechanisms and decisions, potentially
yielding an even clearer understanding of ML models. Together they can allow for human learning
from ML, certain types of regulatory compliance, and crucially, human appeal or override of automated
model decisions [32]. Interpretable models and post-hoc explanations are likely good candidates for
ML uses cases under the FCRA, ECOA, GDPR and other regulations that may require explanations of
model decisions, and they are already used in the financial services industry today for model validation
and other purposes. (For examples uses in financial services, see Deep Insights into Explainability
and Interpretability of Machine Learning Algorithms and Applications to Risk Management. Also
note that many non-consistent explanation methods can result in drastically different global and local
feature importance values across different models trained on the same data or even for refreshing

https://github.com/openai/gpt-2/blob/master/model_card.md
https://modelcards.withgoogle.com/object-detection
https://github.com/jphall663/awesome-machine-learning-interpretability
https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=303053
https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=303053
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a model with augmented training data [33]. Consistency and accuracy guarantees are perhaps a
factor in the growing momentum behind Shapley values as a candidate technique for generating
consumer-specific adverse action notices for explaining and appealing automated ML-based decisions
in highly-regulated settings, such as credit lending [57].) In general, transparency in ML also facilitates
additional responsible AI processes such as model debugging, model documentation, and logical
appeal and override processes, some of which may also be required by applicable regulations (e.g.,
US Federal Reserve Bank SR 11-7: Guidance on Model Risk Management). Among these, providing
persons affected by a model with the opportunity to appeal ML-based decisions may deserve the most
attention. ML models are often wrong (“All models are wrong, but some are useful.”—George Box,
Statistician (1919–2013)) and appealing black-box decisions can be difficult (e.g., When a Computer
Program Keeps You in Jail). For high-stakes, human-centered, or regulated applications that are trusted
with mission- or life-critical decisions, the ability to logically appeal or override inevitable wrong
decisions is not only a possible prerequisite for compliance, but also a failsafe procedure for those
affected by ML decisions.

4.3. Discrimination Testing and Remediation in Practice

A significant body of research has emerged around exploring and fixing ML discrimination [58].
Methods can be broadly placed into two groups: more traditional methods that mitigate discrimination
by searching across possible algorithmic and feature specifications, and many approaches that have
been developed in the last 5–7 years that alter the training algorithm, preprocess training data,
or post-process predictions in order to diminish class-control correlations or dependencies. Whether
these more recent methods are suitable for a particular use case depends on the legal environment
where a model is deployed and on the use case itself. For comments on why some recent techniques
could result in regulatory non-compliance in certain scenarios, see Appendix G.

Of the newer class of fairness enhancing interventions, within-algorithm discrimination mitigation
techniques that do not use class information may be more likely to be acceptable in highly regulated
settings today. These techniques often incorporate a loss function where more discriminatory paths
or weights are penalized and only used by the model if improvements in fit overcome some penalty.
(The relative level of fit-to-discrimination penalty is usually determined via hyperparameter.) Other
mitigation strategies that only alter hyperparameters or algorithm choice are also likely to be acceptable.
Traditional feature selection techniques (e.g., those used in linear models and decision trees) are also
likely to continue to be accepted in regulatory environments. For further discussion of techniques that
can mitigate DI in US financial services, see Schmidt and Stephens [59].

Regardless of the methodology chosen to minimize disparities, advances in computing have
enhanced the ability to search for less discriminatory models. Prior to these advances, only a small
number of alternative algorithms could be tested for lower levels of disparity without causing infeasible
delays in model implementation. Now, large numbers of models can be quickly tested for lower
discrimination and better predictive quality. An additional opportunity arises as a result of ML itself:
the well-known Rashomon effect, or the multiplicity of good ML models for most datasets. It is now
feasible to train more models, find more good models, and test more models for discrimination, and
among all those tested models, there are likely to be some with high predictive performance and low
discrimination.

4.4. Intersectional and Non-Static Risks in Machine Learning

The often black-box nature of ML, the perpetuation or exacerbation of discrimination by ML,
or the privacy harms and security vulnerabilities inherent in ML are each serious and difficult
problems on their own. However, evidence is mounting that these harms can also manifest as
complex intersectional challenges, e.g., the fairwashing or scaffolding of biased models with ML
explanations, the privacy harms of ML explanations, or the adversarial poisoning of ML models
to become discriminatory [8,19,20] (e.g., Tay, Microsoft’s AI chatbot, gets a crash course in racism from

https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html
https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html
https://www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai-chatbot-gets-a-crash-course-in-racism-from-twitter
https://www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai-chatbot-gets-a-crash-course-in-racism-from-twitter
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Twitter). (While the focus of this paper is not ML security, proposed best-practices from that field do
point to transparency of ML systems as a mitigating factor for some ML attacks and hacks [55]. High
system complexity is sometimes considered a mitigating influence as well [60]. This is sometimes
known as the transparency paradox in data privacy and security, and it likely applies to ML security
as well, especially in the context of interpretable ML models and post-hoc explanation (see The AI
Transparency Paradox).) Practitioners should of course consider the discussed interpretable modeling,
post-hoc explanation, and discrimination testing approaches as at least partial remedies to the
black-box and discrimination issues in ML. However, they should also consider that explanations
can ease model stealing, data extraction, and membership inference attacks, and that explanations
can mask ML discrimination. Additionally, high-stakes, human-centered, or regulated ML systems
should generally be built and tested with robustness to adversarial attacks as a primary design
consideration, and specifically to prevent ML models from being poisoned or otherwise altered to
become discriminatory. Accuracy, discrimination, and security characteristics of a system can change
over time as well. Simply testing for these problems at training time, as presented in Section 3,
is not adequate for high-stakes, human-centered, or regulated ML systems. Accuracy, discrimination,
and security should be monitored in real-time and over time, as long as a model is deployed.

5. Conclusions

This text puts forward results on simulated data to provide some validation of constrained ML
models, post-hoc explanation techniques, and discrimination testing methods. These same modeling,
explanation, and discrimination testing approaches are then applied to more realistic mortgage data
to provide an example of a responsible ML workflow for high-stakes, human-centered, or regulated
ML applications. The discussed methodologies are solid steps toward interpretability, explanation,
and minimal discrimination for ML decisions, which should ultimately enable increased fairness
and logical appeal processes for ML decision subjects. Of course, there is more to the responsible
practice of ML than interpretable models, post-hoc explanation, and discrimination testing, even from
a technology perspective, and Section 4 also points out numerous additional references and open
source Python software assets that are available to researchers and practitioners today to increase
human trust and understanding in ML systems. While the complex and messy problems of racism,
sexism, privacy violations, and cyber crime can probably never be solved by technology alone, this
work and many others illustrate numerous ways for ML practitioners to mitigate such risks.

Author Contributions: N.G., data cleaning; GBM and MGBM, assessment and results; P.H., primary author; K.M.,
ANN, and XNN, implementation, assessment, and results; N.S., secondary author, data simulation and collection,
and discrimination testing. All authors have read and agreed to the published version of the manuscript.

Funding: This work received no external funding.

Acknowledgments: Wen Phan for work in formalizing notation. Sue Shay for editing. Andrew Burt for ideas
around the transparency paradox.

Conflicts of Interest: The authors declare no conflict of interest. XNN was first made public by the corporate
model validation team at Wells Fargo bank. Wells Fargo is a customer of, and investor in, H2O.ai and a client of
BLDS, LLC. However, communications regarding XNN between Wells Fargo and Patrick Hall at H2O.ai have been
extremely limited prior to and during the drafting of this manuscript. Moreover, Wells Fargo exerted absolutely
no editorial control over the text or results herein.

Abbreviations

The following abbreviations are used in this manuscript:

https://www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai-chatbot-gets-a-crash-course-in-racism-from-twitter
https://www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai-chatbot-gets-a-crash-course-in-racism-from-twitter
https://hbr.org/2019/12/the-ai-transparency-paradox
https://hbr.org/2019/12/the-ai-transparency-paradox


Information 2020, 11, 137 19 of 32

AI artificial intelligence
AIR adverse impact ratio
ALE accumulated local effect
ANN artificial neural network
APR annual percentage rate
AUC area under the curve
CFPB Consumer Financial Protection Bureau
DI disparate impact
DT disparate treatment
DTI debt to income

EBM or GA2M
explainable boosting machine, i.e., variants GAMs that consider two-way interactions and
may incorporate boosting into training

EEOC Equal Employment Opportunity Commission
ECOA Equal Credit Opportunity Act
EDA exploratory data analysis
EU European Union
FCRA Fair Credit Reporting Act
FNR false negative rate
FPR false positive rate
GAM generalized additive model
GBM gradient boosting machine
GDPR General Data Protection Regulation
HMDA Home Mortgage Disclosure Act
ICE individual conditional expectation
LTV loan to value
MCC Matthews correlation coefficient
ME marginal effect
MGBM monotonic gradient boosting machine
ML machine learning
PD partial dependence
RMSE root mean square error
SGD stochastic gradient descent
SHAP Shapley Additive Explanation
SMD standardized mean difference
SR supervision and regulation
US United States
XNN explainable neural network

Appendix A. Mortgage Data Details

The US HMDA law, originally enacted in 1975, requires many financial institutions that originate
mortgage products to provide certain loan-level data about many types of mortgage-related products
on an annual basis. This information is first provided to the CFPB, which subsequently releases some
of the data to the public. Regulators often use HMDA data to, “... show whether lenders are serving
the housing needs of their communities; they give public officials information that helps them make
decisions and policies; and they shed light on lending patterns that could be discriminatory” (see
Mortgage data (HMDA)). In addition to regulatory use, public advocacy groups use these data for
similar purposes, and the lenders themselves use the data to benchmark their community outreach
relative to their peers. The publicly available data that the CFPB releases includes information such as
the lender, the type of loan, loan amount, LTV ratio, DTI ratio, and other important financial descriptors.
The data also include information on each borrower and co-borrower’s race, ethnicity, gender, and
age. Because the data includes information on these protected class characteristics, certain measures
that can be indicative of discrimination in lending can be calculated directly using the HDMA data.
Ultimately, the HMDA data represent the most comprehensive source of data on highly-regulated

https://www.consumerfinance.gov/data-research/hmda/
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mortgage lending that is publicly available, which makes it an ideal dataset to use for the types of
analyses set forth in Sections 2 and 3.

Appendix B. Selected Algorithmic Details

Appendix B.1. Notation

To facilitate descriptions of data, modeling, and other post-hoc techniques, notation for input and
output spaces, datasets, and models is defined.

Appendix B.1.1. Spaces

• Input features come from the set X contained in a P-dimensional input space, X ⊂ RP.
An arbitrary, potentially unobserved, or future instance of X is denoted x, x ∈ X .

• Labels corresponding to instances of X come from the set Y .
• Learned output responses of models are contained in the set Ŷ .

Appendix B.1.2. Data

• An input dataset X is composed of observed instances of the set X with a corresponding dataset
of labels Y, observed instances of the set Y .

• Each i-th observed instance of X is denoted as x(i) = [x(i)0 , x(i)1 , . . . , x(i)P−1], with corresponding i-th
labels in Y, y(i), and corresponding predictions in Ŷ, ŷ(i).

• X and Y consist of N tuples of observed instances: [(x(0), y(0)), (x(1), y(1)), . . . , (x(N−1), y(N−1))].
• Each j-th input column vector of X is denoted as Xj = [x(0)j , x(1)j , . . . , x(N−1)

j ]T .

Appendix B.1.3. Models

• A type of ML model g, selected from a hypothesis set H, is trained to represent an unknown

signal-generating function f observed as X with labels Y using a training algorithm A: X, Y A−→ g,
such that g ≈ f .

• g generates learned output responses on the input dataset g(X) = Ŷ, and on the general input
space g(X ) = Ŷ .

• A model to be explained or tested for discrimination is denoted as g.

Appendix B.2. Monotonic Gradient Boosting Machine Details

For some gMGBM model (see Equation (2)), monotonic splitting rules, Θmono
b , are selected in a

greedy, additive fashion by minimizing a regularized loss function, L, that considers known target
labels, y, the predictions of all subsequently trained trees in gMGBM, gMGBM

b−1 (X), and the b-th tree splits
applied to some instance x, Tb(x; Θmono

b ), in a numeric error function (e.g., squared error, Huber error),
l, in addition to a regularization term that penalizes complexity in the b-th tree, Ω(Tb). For the b-th
iteration over N instances, Lb, can generally be defined as:

Lb =
N−1

∑
i=0

l(y(i), gMGBM
b−1 (x(i)), Tb(x

(i); Θmono
b )) + Ω(Tb) (A1)

In addition to L, gMGBM training is characterized by monotonic splitting rules and constraints
on tree node weights. Each binary splitting rule in Tb, θb,j,k ∈ Θb, is associated with a feature, Xj, is
the k-th split associated with Xj in Tb, and results in left, L, and right, R, child nodes with a numeric
weights, {wb,j,k,L, wb,j,k,R}. For terminal nodes, {wb,j,k,L, wb,j,k,R} can be direct numeric components

of some gMGBM prediction. For two values, xα
j and xβ

j , of some feature Xj, where xα
j ≤ xβ

j , gMGBM is

positive monotonic with respect to Xj if gMGBM(xα
j ) ≤ gMGBM(xβ

j ) ∀ {x
α
j ≤ xβ

j } ∈ Xj. The following
rules and constraints ensure positive monotonicity in Θmono

b :
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1. For the first and highest split in Tb involving Xj, any θb,j,0 resulting in T(xj; θb,j,0) =

{wb,j,0,L, wb,j,0,R} where wb,j,0,L > wb,j,0,R, is not considered.
2. For any subsequent left child node involving Xj, any θb,j,k≥1 resulting in T(xj; θb,j,k≥1) =

{wb,j,k≥1,L, wb,j,k≥1,R} where wb,j,k≥1,L > wb,j,k≥1,R, is not considered.
3. Moreover, for any subsequent left child node involving Xj, T(xj; θb,j,k≥1) = {wb,j,k≥1,L, wb,j,k≥1,R},

{wb,j,k≥1,L, wb,j,k≥1,R} are bound by the associated θb,j,k−1 set of node weights,

{wb,j,k−1,L, wb,j,k−1,R}, such that {wb,j,k≥1,L, wb,j,k≥1,R} <
wb,j,k−1,L+wb,j,k−1,R

2 .
4. (1) and (2) are also applied to all right child nodes, except that for right child nodes wb,j,k,L ≤

wb,j,k,R and {wb,j,k≥1,L, wb,j,k≥1,R} ≥
wb,j,k−1,L+wb,j,k−1,R

2 .

Note that for any one Xj and subtree in gMGBM, left subtrees will always produce lower predictions
than right subtrees, and that any gMGBM(x) is an addition of each full Tb prediction, with the application
of a monotonic logit or softmax link function for classification problems. Moreover, each tree’s root
node corresponds to some constant node weight that by definition obeys monotonicity constraints,
T(xα

j ; θb,0) = T(xβ
j ; θb,0) = wb,0. Together these additional splitting rules and node weight constraints

ensure that gMGBM(xα
j ) ≤ gMGBM(xβ

j ) ∀ {x
α
j ≤ xβ

j } ∈ Xj. For a negative monotonic constraint,

i.e., gMGBM(xα
j ) ≥ gMGBM(xβ

j ) ∀ {x
α
j ≤ xβ

j } ∈ Xj, left and right splitting rules and node weight
constraints are switched. Also consider that MGBM models with independent monotonicity constraints
between some Xj and y likely restrict non-monotonic interactions between multiple Xj. Moreover,
if monotonicity constraints are not applied to all Xj ∈ X, any strong non-monotonic signal in training
data associated with some important Xj maybe forced onto some other arbitrary unconstrained Xj
under some gMGBM models, compromising the end goal of interpretability.

Appendix B.3. Explainable Neural Network Details

gXNN is comprised of 3 meta-layers:

1. The first and deepest meta-layer, composed of K linear ∑j βk,jxj hidden units (see Equation (3)),
which should learn higher magnitude weights for each important input, Xj, is known as the
projection layer. It is fully connected to each input Xj. Each hidden unit in the projection layer may
optionally include a bias term.

2. The second meta-layer contains K hidden and separate nk ridge functions, or subnetworks. Each nk
is a neural network itself, which can be parametrized to suit a given modeling task. To facilitate
direct interpretation and visualization, the input to each subnetwork is the 1-dimensional output
of its associated projection layer ∑j βk,jxj hidden unit. Each nk can contain several bias terms.

3. The output meta-layer, called the combination layer, is an output neuron comprised of a global
bias term, µ0, and the K weighted 1-dimensional outputs of each subnetwork, γknk(∑j βk,jxj).
Again, each nk subnetwork output into the combination layer is restricted to 1-dimension for
interpretation and visualization purposes.
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Figure A1. A general diagram of an XNN with three metalayers: the bottom combination layer with K
linear ∑j βk,jxj hidden units, the middle metalayer with with K hidden and separate nk ridge functions,
and the output combination layer that generates gXNN(X) predictions. Figure adapted from Vaughan
et al. [21].

Appendix B.4. One-dimensional Partial Dependence and Individual Conditional Expectation Details

Following Friedman et al. [14] a single input feature, Xj ∈ X, and its complement set, XP\{j} ∈ X,
where Xj ∪ XP\{j} = X is considered. PD(Xj, g) for a given Xj is the estimated average output of the
learned function g(X) when all the observed instances of Xj are set to a constant xγ ∈ X and XP\{j}
is left unchanged. ICE(xj, g) for a given instance x and feature xj is estimated as the output of g(x)
when xj is set to a constant xγ ∈ X and all other features x ∈ XP\{j} are left untouched. PD and ICE
curves are usually plotted over some set of constants drawn from X , as displayed in Section 3.2.2 and
Appendix E.1. Due to known problems for PD in the presence of strong correlation and interactions,
PD should not be used alone. PD should be paired with ICE or be replaced with accumulated local
effect (ALE) plots [23,30].

Appendix B.5. Shapley Value Details

For some instance x ∈ X , Shapley explanations take the form:

g(x) = φ0 +
j=P−1

∑
j=0

φjzj (A2)

In Equation (A2), z ∈ {0, 1}P is a binary representation of x where 0 indicates missingness. Each
Shapley value, φj, is the local feature contribution value associated with xj, and φ0 is the average of
g(X). Each φj is a weighted combination of model predictions with xj, gx(S ∪ {j}), and the model
predictions without xj, gx(S), for every possible subset of features S not including j, S ⊆ P \ {j},
where gx incorporates the mapping between x and the binary vector z.

φj = ∑
S⊆P\{j}

|S|!(P − |S| − 1)!
P !

[gx(S ∪ {j})− gx(S)] (A3)

Local, per-instance explanations using Shapley values tend to involve ranking xj ∈ x by φj values
or delineating a set of the Xj names associated with the k-largest φj values for some x, where k is some
small positive integer, say five. Global explanations are typically the absolute mean of the φj associated
with a given Xj across all of the instances in some set X.
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Appendix C. Types of Machine Learning Discrimination in US Legal and Regulatory Settings

It is important to explain and draw a distinction between the two major types of discrimination
recognized in US legal and regulatory settings, disparate treatment (DT) and disparate impact (DI).
DT occurs most often in an algorithmic setting when a model explicitly uses protected class status
(e.g., race, sex) as an input feature or uses a feature that is so similar to protected class status that it
essentially proxies for class membership. With some limited exceptions, the use of these factors in an
algorithm is illegal under several statutes in the US. DI occurs when some element of a decisioning
process includes a facially neutral factor (i.e, a reasonable and valid predictor of response) that results
in a disproportionate share of a protected class receiving an unfavorable outcome. In modeling, this is
most typically driven by a statistically important feature that is distributed unevenly across classes,
which causes more frequent unfavorable outcomes for the protected class. However, other factors,
such as hyperparameter or algorithm choices, can drive DI. Crucially, legality hinges on whether
changing the model, for example exchanging one feature for another or altering the hyperparameters
of an algorithm, can lead to a similarly predictive model with lower DI.

Appendix D. Practical vs. Statistical Significance for Discrimination Testing

A finding of practical significance means that discovered disparity is not only statistically significant,
but also passes beyond a chosen threshold that would constitute prima facie evidence of illegal
discrimination. Practical significance acknowledges that any large dataset is likely to show statistically
significant differences in outcomes by class, even if those differences are not truly meaningful. It further
recognizes that there are likely to be situations where differences in outcomes are beyond a model
user’s ability to correct them without significantly degrading the quality of the model. Moreover,
practical significance is also needed by model builders and compliance personnel to determine whether
a model should undergo remediation efforts before it is put into production. Unfortunately, guidelines
for practical significance, i.e., the threshold at which any statistically significant disparity would
be considered evidence of illegal discrimination, are not as frequently codified as the standards for
statistical significance. One exception, however, is in employment discrimination analyses, where the
US Equal Employment Opportunity Commission (EEOC) has stated that if the AIR is below 0.80
and statistically significant, then this constitutes prima facie evidence of discrimination, which the
model user must rebut in order for the DI not to be considered illegal discrimination. (Importantly, the
standard of 0.80 is not a law, but a rule of thumb for agencies tasked with enforcement of discrimination
laws. “Adoption of Questions and Answers To Clarify and Provide a Common Interpretation of the
Uniform Guidelines on Employee Selection Procedures,” Federal Register, Volume 44, Number 43
(1979).) It is important to note that the 0.80 measure of practical significance, also known as the 80%
rule and the 4/5ths rule, is explicitly used in relation to AIR, and it is not clear that the use of this
threshold is directly relevant to testing fairness for measures other than the AIR.

The legal thresholds for determining statistical significance is clearer and more consistent than that
for practical significance. The first guidance in US courts occurred in a case involving discrimination in
jury selection, Castaneda vs. Partida (430 US 482 - Supreme Court (1977)). Here, the US Supreme Court
wrote that, “As a general rule for such large samples, if the difference between the expected value and
the observed number is greater than two or three standard deviations, then the hypothesis that the jury
drawing was random would be suspect to a social scientist.” This “two or three standard deviations”
test was then applied to employment discrimination in Hazelwood School Districts vs. United States (433
US 299 (1977)). Out of this, a 5% two-sided test (z = 1.96), or an equivalent 2.5% one-sided test, has
become a common standard for determining whether evidence of disparities is statistically significant.

Appendix E. Additional Simulated Data Results

As seen in Section 3.1.1, little or no trade-off is required in terms of model to fit to use the
constrained models. Hence, intrinsic interpretability, post-hoc explainability, and discrimination are
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explored further for the gMGBM and gXNN models in Appendices E.1 and E.2. Intrinsic interpretability
for gMGBM is evaluated with PD and ICE, and post-hoc explainability is highlighted via global and local
Shapley explanations. For gXNN, Shapley explanation techniques are also used to generate global and
local feature importance to augment interpretability results exhibited in Section 3.1.2. Both gMGBM(X)
and gXNN(X) are evaluated for discrimination using AIR, ME, SMD, and other measures.

Appendix E.1. Interpretability and Post-hoc Explanation Results

Global mean absolute Shapley value feature importance for gMGBM(X) on the simulated test data
is displayed in Figure A2.

Figure A2. Global mean absolute Tree SHAP feature importance for gMGBM(X) on the simulated test data.

As expected, the XFriedman,j features from the original Friedman [10] and Friedman et al. [11]
formula are the main drivers of gMGBM(X) predictions, with encoded versions of the augmented
categorical and binary features contributing less on average to gMGBM(X) predictions.

Figure A3 highlights PD, ICE, and histograms of the most important features from Figure A2.

Figure A3. PD, ICE for ten instances across selected percentiles of gMGBM(X), and histograms for the
three most important input features of gMGBM on the simulated test data.

XFriedman,1, XFriedman,2, and XFriedman,4 were positively monotonically constrained under gMGBM

for the simulated data, and positive monotonicity looks to be confirmed on average with PD and at
numerous local percentiles of gMGBM(X) with ICE. As the PD curves generally follow the patterns
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of the ICE curves, PD is likely an accurate representation of average feature behavior for XFriedman,1,
XFriedman,2, and XFriedman,4. Also because PD and ICE curves do not obviously diverge, gMGBM is likely
not modeling strong interactions, despite the fact that known interactions are included in the simulated
data signal-generating function in Equation (1). The one-dimensional monotonic constraints may
hinder the modeling of non-monotonic interactions, but do not strongly affect overall gMGBM accuracy,
perhaps due to the main drivers, XFriedman,1, XFriedman,2, and XFriedman,4, all being constrained in the
same direction and able to weakly interact as needed.

Local Shapley values for records at the 10th, 50th, and 90th percentiles of gMGBM(X) in the
simulated test data are displayed in Figure A4.

Figure A4. Tree SHAP values for three instances across selected percentiles of gMGBM(X) for the
simulated test data.

The Shapley values in Figure A4 appear to be a logical result. For the lower prediction at the
10th percentile of gMGBM(X), the largest local contributions are negative and the majority of local
contributions are also negative. At the median of gMGBM(X), local contributions are roughly split
between positive and negative values, and at the 90th of gMGBM(X), most large contributions are
positive. In each case, large local contributions generally follow global importance results in Figure A2
as well.

Figure A5 shows global mean absolute Shapley feature importance for gXNN(X) on the simulated
test data, using the approximate Deep SHAP technique.

Figure A5. Global mean absolute Deep SHAP feature importance for gXNN(X) on the simulated test data.

Like gMGBM, gXNN ranks the XFriedman,j features higher in terms of importance than the categorical
and binary features. The consistency between the feature rankings of gMGBM and gXNN is somewhat
striking, given their different hypothesis families and architectures. Both gMGBM and gXNN rank
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XFriedman,1, XFriedman,2, and XFriedman,4 as the most important features, both place XCategorical,2 and
XCategorical,3 above the XBinary,1 and XBinary,2 features, both rank XBinary,1 above XBinary,2, and both
place the least importance on XCategorical,4 and XCategorical,0.

Local Deep SHAP feature importance in Figure A6 supplements the global interpretability of
gXNN displayed in Figures A5 and 1. Local Deep SHAP values are extracted from the projection layer
of gXNN and reported in the probability space. Deep SHAP values can be calculated for any arbitrary
gXNN(x), allowing for detailed, local summarization of individual model predictions.

Figure A6. Deep SHAP values for three instances across selected percentiles of gXNN(X) on the
simulated test data.

As expected, Deep SHAP values generally increase from the 10th percentile of gXNN(X) to the
90th percentile of gXNN(X), with primarily important global drivers of model behavior contributing to
the selected local gXNN(x) predictions.

Appendix E.2. Discrimination Testing Results

Table A1a,b show the results of the disparity tests using the simulated data for two hypothetical
sets of class-control groups. Several measures of disparities are shown, with the SMDs calculated
using the probabilities from gMGBM(X) and gXNN(X), FNRs, their ratios, MEs, and AIRs calculated
using a binary outcome based on a cutoff of 0.6 (anyone with probabilities of 0.6 or greater receives the
favorable outcome).

Since gMGBM and gXNN assume that a higher score is favorable (as might be the case if the model
were predicting responses to marketing offers), one might consider the relative FNRs as a measure of
the class-control disparities. Table A1b shows that protected group 1 has higher relative FNRs under
gXNN (1.13 vs. 1.06). However, in Table A1a the overall FNRs were lower for gXNN (0.357 vs. 0.401).
This illustrates a danger in considering relative class-control measures in isolation when comparing
across models: despite the gMGBM appearing to be a relatively fairer model, more protected group 1
members experience negative outcomes using gMGBM. This is because FNR accuracy improves for
both the protected group 1 and control group 1, but members of control group 1 benefit more than
those in protected group 1. Of course, the choice of which model is truly fairer is a policy question.
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Table A1. Discrimination measures for the simulated test data. Arrows indicate the direction of
improvement for each measure.

(a) Group size, accuracy, and FNR for gMGBM(X)
and gXNN(X) on the simulated test data.

Class N Model Accuracy↑ FNR↓

Protected 1 3057
gMGBM

gXNN
0.770
0.771

0.401
0.357

Control 1 16,943
gMGBM

gXNN
0.739
0.756

0.378
0.314

Protected 2 9916
gMGBM

gXNN
0.758
0.762

0.331
0.302

Control 2 10,084
gMGBM

gXNN
0.729
0.756

0.420
0.332

(b) AIR, ME, SMD, and FNR ratio for gMGBM(X) and gXNN(X)
on the simulated test data.

Model Protected
Class

Control
Class AIR↑ ME↓ SMD↓ FNR

Ratio↓

gMGBM 1
2

1
2

0.752
1.10

9.7%
-3.6%

−0.206
0.106

1.06
0.788

gXNN 1
2

1
2

0.727
0.976

12.0%
1.0%

−0.274
0.001

1.13
0.907

For gXNN(X), 12.0% fewer control group 1 members receive the favorable offer under the ME
column in Table A1b. Of note is that 12.0% is not a meaningful difference without context. If the
population of control group 1 and control group 2 were substantially similar in relevant characteristics,
12.0% could represent an extremely large difference and would require remediation. However, if they
represent substantially different populations, then 12.0% could represent a reasonable deviation from
parity. As an example, if a lending institution that has traditionally focused on high credit quality
clients were to expand into previously under-banked communities, an 12.0% class-control difference in
loan approval rates might be expected because the average credit quality of the new population would
be lower than that of the existing population. Protected group 1’s AIR under gXNN is 0.727, below
the EEOC 4/5ths rule threshold. It is also highly statistically significant (not shown, but available in
resources discussed in Section 2.8). Together these would indicate that there may be evidence of illegal
DI. As with ME and other measures, the reasonableness of this disparity is not clear outside of context.
However, most regulated institutions that do perform discrimination analyses would find an AIR of
this magnitude concerning and warranting further review. Some pertinent remediation strategies for
discovered discrimination are discussed in Section 4.3.

SMD is used here to measure gMGBM(X) and gMGBM(X) probabilities prior to being transformed
into classifications. (This measurement would be particularly relevant if the probabilities are used in
combination with other models to determine an outcome.) The results show that gMGBM(X) has less
DI than gXNN(X) (−0.206 vs. −0.274), but both are close to Cohen’s small effect threshold of −0.20.
Whether a small effect would be a highlighted concern would depend on a organization’s chosen
threshold for flagging models for further review.

Appendix F. Discrimination Testing and Cutoff Selection

The selection of which cutoff to use in production is typically based on the model’s use case, rather
than one based solely on the statistical properties of the predictions themselves. For example, a model



Information 2020, 11, 137 28 of 32

developer at a bank might build a credit model where the F1 score is maximized at a delinquency
probability cutoff of 0.15. For purposes of evaluating the quality of the model, she may review
confusion matrix statistics (accuracy, recall, precision, etc.) using cutoffs based on the maximum F1
score. However, because of its risk tolerance and other factors, the bank itself might be willing to lend
to anyone with a delinquency probability of 0.18 or lower, which would mean that anyone who is
scored at 0.18 or lower would receive an offer of credit. Because disparity analyses are concerned
with how people are affected by the deployed model, it is essential that any confusion matrix-based
measures of disparity be calculated on the in-production classification decisions, rather than on cutoffs
that are not related to what those affected by the model will experience.

Appendix G. Recent Fairness Techniques in US Legal and Regulatory Settings

Great care must be taken to ensure that the appropriate discrimination measures are employed
for any given use case. Additionally, the effects of changing a model must be viewed holistically.
For example, the mortgage data disparity analysis in Section 3.2.3 shows that if one were to choose
gMGBM over gXNN because gMGBM has a lower FPR ratio for blacks, it would ultimately lead to a
higher FPR for blacks overall, which may represent doing more harm than good. Furthermore,
using some recently developed discrimination mitigation methods may lead to non-compliance with
anti-discrimination laws and regulations. A fundamental maxim of US anti-discrimination law is
that (to slightly paraphrase), “similarly situated people should be treated similarly.” (In the pay
discrimination case, Bazemore vs. Friday, 478 US 385 (1986), the US Supreme Court found that,“Each
week’s paycheck that delivers less to a black than to a similarly situated white is a wrong actionable ...”
Beyond the obvious conceptual meaning, what specifically constitutes similarly situated is controversial
and its interpretation differs by circuit.) A model developed without inclusion of class status (or proxies
thereof) considers similarly situated people the same on the dimensions included in the model: people
who have the same feature values will have the same model output (though there may be some small
or random differences in outcomes due to computational issues). Obviously, the inclusion of protected
class status will change model output by class. With possible rare exceptions, this is likely to be viewed
with legal and regulatory skepticism today, even if including class status is done with fairness as
the goal. (In a reverse discrimination case, Ricci v Desafano, 557 US 557 (2009), the court found that
any consideration of race which is not justified by correcting for past proven discrimination is illegal
and, moreover, a lack of fairness is not necessarily evidence of illegal discrimination.) Preprocessing
and post-processing techniques may be similarly problematic, because industries that must provide
explanations to those who receive unfavorable treatment (e.g., adverse action notices in US financial
services) may have to incorporate the class adjustments into their explanations as well.
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